Poonia / Singh / Nayak | Deep Learning for Sustainable Agriculture | Buch | 978-0-323-85214-2 | sack.de

Buch, Englisch, 406 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 660 g

Poonia / Singh / Nayak

Deep Learning for Sustainable Agriculture


Erscheinungsjahr 2022
ISBN: 978-0-323-85214-2
Verlag: William Andrew Publishing

Buch, Englisch, 406 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 660 g

ISBN: 978-0-323-85214-2
Verlag: William Andrew Publishing


The evolution of deep learning models, combined with with advances in the Internet of Things and sensor technology, has gained more importance for weather forecasting, plant disease detection, underground water detection, soil quality, crop condition monitoring, and many other issues in the field of agriculture. agriculture. Deep Learning for Sustainable Agriculture discusses topics such as the impactful role of deep learning during the analysis of sustainable agriculture data and how deep learning can help farmers make better decisions. It also considers the latest deep learning techniques for effective agriculture data management, as well as the standards established by international organizations in related fields. The book provides advanced students and professionals in agricultural science and engineering, geography, and geospatial technology science with an in-depth explanation of the relationship between agricultural inference and the decision-support amenities offered by an advanced mathematical evolutionary algorithm.
Poonia / Singh / Nayak Deep Learning for Sustainable Agriculture jetzt bestellen!

Zielgruppe


<p>Primary: Academics and Senior Graduates; university and faculty teachers, instructors and senior students in Computer Science working in the area of deep learning and agriculture</p> <p>Secondary: Environmentalists working in the field of agriculture science</p>

Weitere Infos & Material


1. Smart agriculture: Technological advancements on agriculture: A systematical review 2. A systematic review of artificial intelligence in agriculture 3. Introduction to deep learning in precision agriculture: Farm image feature detection using unmanned aerial vehicles through classification and optimization process of machine learning with convolution neural network 4. Design and implementation of a crop recommendation system using nature-inspired intelligence for Rajasthan, India 5. Artificial intelligent-based water and soil management 6. Machine learning for soil moisture assessment 7. Automated real-time forecasting of agriculture using chlorophyll content and its impact on climate change 8. Transformations of urban agroecology landscape in territory transition 9. WeedNet: A deep neural net for weed identification 10. Sensors make sense: Functional genomics, deep learning, and agriculture 11. Crop management: Wheat yield prediction and disease detection using an intelligent predictive algorithms and metrological parameters 12. Sugarcane leaf disease detection through deep learning 13. Prediction of paddy cultivation using deep learning on land cover variation for sustainable agriculture 14. Artificial intelligence-based detection and counting of olive fruit flies: A comprehensive survey


Singh, Vijander
Dr. Vijander Singh is working as Assistant Professor, Department of Computer Science and Engineering, Manipal University Jaipur, India. He received Ph.D. degree from Banasthali University, Banasthali, India, in April 2017. He has published 25 research papers in indexed journals and several book chapters for international publishers. He authored two books and handled/handling journals of international repute such as Taylor & Francis, Taru Publication, IGI Global, Inderscienc, etc. as guest editor. He is an associate editor of TARU Journal of Sustainable Technologies and Computing (TJSTC). He has organized several International Conferences, FDPs, and Workshops as a core team member of the organizing committee. His research area includes Machine Learning, Deep Learning, Precision Agriculture, and Networking.

Poonia, Ramesh Chandra
Dr. Ramesh Chandra Poonia is an Associate Professor at the Department of Computer Science, CHRIST (Deemed to be University), Bangalore, India. Recently completed his Postdoctoral Fellowship from CPS Lab, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Ålesund, Norway. He has received his Ph.D. degree in Computer Science from Banasthali University, Banasthali, India in July 2013. His research interests are Cyber-Physical Systems, Network Protocol Evaluation and Artificial Intelligence. He is Chief Editor of TARU Journal of Sustainable Technologies and Computing (TJSTC) and Associate Editor of the Journal of Sustainable Computing: Informatics and Systems, Elsevier. He also serves in the editorial boards of a few international journals. He is main author and co-author of 06 books and an editor of more than 25 special issue of journals and books including Springer, CRC Press - Taylor and Francis, IGI Global and Elsevier, edited books and Springer conference proceedings and has authored/co-authored over 65 research publications in peer-reviewed reputed journals, book chapters and conference proceedings.

Nayak, Soumya Ranjan
Dr. Soumya Ranjan Nayak now holds the position of Assistant Professor in the School of Computer Engineering at Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, located in Odisha, India. He obtained a Doctor of Philosophy (Ph.D) and Master of Technology (M.Tech) in Computer Science and Engineering under a scholarship provided by the Ministry of Human Resource Development (MHRD) of the Government of India. These degrees were earned at CET, BPUT Rourkela, India. Prior to this, he completed a Bachelor of Technology (B. Tech) and a Diploma in Computer Science and Engineering. He has authored over 150 articles that have been published in reputable international journals and conferences such as Elsevier, Springer, World Scientific, IOS Press, Taylor & Francis, Hindawi, Inderscience, IGI Global, and others. These publications have undergone a rigorous peer-review process. In addition to the aforementioned accomplishments, the individual has authored 16 book chapters, published 6 books, and obtained 7 Indian patents (with 4 patents being granted). Furthermore, they have secured 4 International patents, all of which have been granted. The researcher's current areas of focus encompass medical picture analysis and classification, machine learning, deep learning, pattern recognition, fractal graphics, and computer vision. The author's writings have garnered over 1500 citations, with an h-index of 24 and an i10-index of 63, as reported by Google Scholar. Dr. Nayak holds the position of an associate editor for several esteemed academic journals, including the Journal of Electronic Imaging (SPIE), Mathematical Problems in Engineering (Hindawi), Journal of Biomedical Imaging (Hindawi), Applied Computational Intelligence and Soft Computing (Hindawi), and PLOS One. He is currently fulfilling the role of a guest editor for special issues of renowned academic journals such as Springer Nature, Elsevier, and Taylor & Franchise. He has been affiliated as a reviewer for numerous esteemed peer-reviewed journals, including Applied Mathematics and Computation, Journal of Applied Remote Sensing, Mathematical Problems in Engineering, International Journal of Light and Electron Optics, Journal of Intelligent and Fuzzy Systems, Future Generation Computer Systems, Pattern Recognition Letters, and others. He has additionally held the Technical Program Committee Member position for several conferences of significant worldwide recognition.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.