Pop / Kolodziej / Kolodziej | Resource Management for Big Data Platforms | E-Book | sack.de
E-Book

E-Book, Englisch, 516 Seiten, eBook

Reihe: Computer Communications and Networks

Pop / Kolodziej / Kolodziej Resource Management for Big Data Platforms

Algorithms, Modelling, and High-Performance Computing Techniques
1. Auflage 2016
ISBN: 978-3-319-44881-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Algorithms, Modelling, and High-Performance Computing Techniques

E-Book, Englisch, 516 Seiten, eBook

Reihe: Computer Communications and Networks

ISBN: 978-3-319-44881-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Serving as a flagship driver towards advance research in the area of Big Data platforms and applications, this book provides a platform for the dissemination of advanced topics of theory, research efforts and analysis, and implementation oriented on methods, techniques and performance evaluation. In 23 chapters, several important formulations of the architecture design, optimization techniques, advanced analytics methods, biological, medical and social media applications are presented. These chapters discuss the research of members from the ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet). This volume is ideal as a reference for students, researchers and industry practitioners working in or interested in joining interdisciplinary works in the areas of intelligent decision systems using emergent distributed computing paradigms. It will also allow newcomers to grasp the key concerns and their potential solutions.
Pop / Kolodziej / Kolodziej Resource Management for Big Data Platforms jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Performance Modeling of Big Data Oriented Architectures
.- 
Workflow Scheduling Techniques for Big Data Platforms.- Cloud Technologies: A New Level for Big Data Mining.- Agent Based High-Level Interaction Patterns for Modeling Individual and Collective Optimizations Problems.- Maximize Profit for Big Data Processing in Distributed Datacenters.- Energy and Power Efficiency in the Cloud.- Context Aware and Reinforcement Learning Based Load Balancing System for Green Clouds.- High-Performance Storage Support for Scientific Big Data Applications on the Cloud.- Information Fusion for Improving Decision-Making in Big Data Applications.- Load Balancing and Fault Tolerance Mechanisms for Scalable and Reliable Big Data Analytics.- Fault Tolerance in MapReduce: A Survey.- Big Data Security.- Big Biological Data Management.- Optimal Worksharing of DNA Sequence Analysis on Accelerated Platforms.- Feature Dimensionality Reduction for Mammographic Report Classification.- Parallel Algorithms for Multi-Relational Data Mining: Application to Life Science Problems.- Parallelization of Sparse Matrix Kernels for Big Data Applications.- Delivering Social Multimedia Content with Scalability.- A Java-Based Distributed Approach for Generating Large-Scale Social Network Graphs.- Predicting Video Virality on Twitter.- Big Data uses in Crowd Based Systems.- Evaluation of a Web Crowd–Sensing IoT Ecosystem Providing Big Data Analysis.- A Smart City Fighting Pollution by Efficiently Managing and Processing Big Data from Sensor Networks.


Dr. Florin Pop
is an Associate Professor in the Distributed Systems Laboratory of the Computer Science Department at the University Politehnica of Bucharest, Romania.
Dr. Joanna Kolodziej
is a Professor in the Department of Computer Science at Cracow University of Technology, Poland. Amongst her recent publications are the Springer titles
Intelligent Agents in Data-intensive Computing
and
Evolutionary Based Solutions for Green Computing
.
Dr. Beniamino Di Martino
is a full Professor of Information Systems at the Second University of Naples, Italy. His publications include the Springer titles
Cloud Portability and Interoperability
and
Smart Organizations and Smart Artifacts
.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.