Þór Jónsson / Gurrin / Tran | MultiMedia Modeling | Buch | 978-3-030-98354-3 | sack.de

Buch, Englisch, Band 13142, 591 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 925 g

Reihe: Lecture Notes in Computer Science

Þór Jónsson / Gurrin / Tran

MultiMedia Modeling

28th International Conference, MMM 2022, Phu Quoc, Vietnam, June 6¿10, 2022, Proceedings, Part II
1. Auflage 2022
ISBN: 978-3-030-98354-3
Verlag: Springer International Publishing

28th International Conference, MMM 2022, Phu Quoc, Vietnam, June 6¿10, 2022, Proceedings, Part II

Buch, Englisch, Band 13142, 591 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 925 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-98354-3
Verlag: Springer International Publishing


The two-volume set LNCS 13141 and LNCS 13142 constitutes the proceedings of the 28th International Conference on MultiMedia Modeling, MMM 2022, which took place in Phu Quoc, Vietnam, during June 6–10, 2022.

The 107 papers presented in these proceedings were carefully reviewed and selected from a total of 212 submissions. They focus on topics related to multimedia content analysis; multimedia signal processing and communications; and multimedia applications and services.

Þór Jónsson / Gurrin / Tran MultiMedia Modeling jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


FULL PAPER - POSTER PRESENTATION.- Long-range Feature Dependencies Capturing for Low-resolution Image Classification.- An IBC reference block enhancement model based on GAN for Screen Content Video Coding.- AS-Net: Class-aware Assistance and Suppression Network for Few-shot Learning.- DIG: A Data-driven Impact-based Grouping Method for Video Rebuffering Optimization.- Indie Games Popularity Prediction by Considering Multimodal Features.- An Iterative Correction Phase of Light Field for novel view Reconstruction.- Multi-object Tracking with A Hierarchical Single-branch Network.- ILMICA - Interactive Learning Model of Image Collage Assessment: A Transfer Learning Approach for Aesthetic Principles.- Exploring implicit and explicit relations with the dual relation-aware network for image captioning.- Generative Landmarks Guided Eyeglasses Removal 3D Face Reconstruction.- Patching Your Clothes: Semantic-aware Learning for Cloth-Changed Person Re-Identification.- Lightweight Wavelet-Based Network for JPEG Artifacts Removal.- Shared Latent Space of Font Shapes and Their Noisy Impressions.- Reconstructing 3D Contour Models of General Scenes from RGB-D Sequences.- SUnet++:Joint Demosaicing and Denoising of Extreme Low-light Raw Image.- HyText - a Scene-Text Extraction Method for Video Retrieval.- Depthwise-separable Residual Capsule for Robust Keyword Spotting.- Adaptive Speech Intelligibility Enhancement for Far-and-Near-end Noise Environments Based on Self-Attention StarGAN.- Personalized Fashion Recommendation using Pairwise Attention.- Graph Neural Networks Based Multi-Granularity Feature Representation Learning for Fine-Grained Visual Categorization.- Skeletonization Based on K-Nearest-Neighbors on Binary Imags.- Classroom Attention Estimation Method Based on Mining Facial Landmarks of Students.- A Novel Chinese Sarcasm Detection Model Based on Retrospective Reader.- Effects and Combination of Tailored Browser-Based and Mobile Cognitive Software Training.- Progressive GAN-based Transfer Network for Low- Light Image Enhancement.- Rethinking Shared Features and Re-Ranking for Cross-Modality Person Re-Identification.- Aversarial Attacks on Deepfake Detectors: A Practical Analysis.- Multi-Modal Semantic Inconsistency Detection in Social Media News Posts.- EEG Emotion Recognition Based On Dynamically Organized Graph Neural Network.- An Unsupervised Multi-Scale Generative Adversarial Network for Remote Sensing Image Pan-Sharpening.- Leveraging Selective Prediction for Reliable Image Geolocation.- Compressive sensing-based image encryption and authentication in edge-clouds.-ECAS-ML: Edge Computing Assisted Adaptation Scheme with ML for HAS.- Fast CU Depth Decision Algorithm for AVS3.- Block Transformer for Video Classification.- CDeRSNet: Towards High Performance Object Detection in Vietnamese Documents Images.- DEMONSTRATION PAPERS.- Making Few-shot Object Detection Simpler and Less Frustrating.- XQM: Search-Oriented vs.~Classifier-Oriented Relevance Feedback on Mobile Phones.- MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks.- DataCAP: A Satellite Datacube and Crowdsourced Street-level Images for the Monitoring of the Common Agricultural Policy.-A Virtual Reality Reminiscence Interface for Personal Lifelog.- VIDEO BROWSER SHOWDOWN 2022.- Efficient Search and Browsing of Large-Scale Video Collections with Vibro.- Multi-Modal Interactive Video Retrieval with Temporal Queries.- Multi-Modal Video Retrieval in Virtual Reality with vitrivr-VR.- Video Search with Context-aware Ranker and Relevance Feedback.- Exquisitor at the Video Browser Showdown 2022.- Videofall - A Hierarchical Search Engine for VBS202.- IVIST: Interactive Video Search Tool in VBS 2022.- AVSeeker: An Active Video Retrieval Engine VBS2022.- VISIONE at Video Browser Showdown 2022.- Reinforcement Learning-Based Interactive Video Search.- UIT at VBS 2022: an Unified and Interactive video retrieval system withTemporal search.- V-FIRST: A Flexible Interactive RetrievalSystem for Video at VBS 2022.- diveXplore 6.0: ITEC's Interactive Video Exploration System at VBS 2022.- CDC: Color-based Diffusion model with Caption embedding in VBS 2022.- ViRMA: Virtual Reality Multimedia Analytics at Video Browser Showdown 2022.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.