Satpathy / Kumar Paikaray / Yang | Sustainable Farming Through Machine Learning | Buch | 978-1-032-77749-8 | sack.de

Buch, Englisch, 300 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 599 g

Reihe: Artificial Intelligence for Sustainable Engineering and Management

Satpathy / Kumar Paikaray / Yang

Sustainable Farming Through Machine Learning

Enhancing Productivity and Efficiency
1. Auflage 2024
ISBN: 978-1-032-77749-8
Verlag: CRC Press

Enhancing Productivity and Efficiency

Buch, Englisch, 300 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 599 g

Reihe: Artificial Intelligence for Sustainable Engineering and Management

ISBN: 978-1-032-77749-8
Verlag: CRC Press


This book explores the transformative potential of machine learning (ML) technologies in agriculture. It delves into specific applications, such as crop monitoring, disease detection, and livestock management, demonstrating how artificial intelligence/machine learning (AI/ML) can optimize resource management and improve overall productivity in farming practices.

Sustainable Farming through Machine Learning: Enhancing Productivity and Efficiency provides an in-depth overview of AI and ML concepts relevant to the agricultural industry. It discusses the challenges faced by the agricultural sector and how AI/ML can address them. The authors highlight the use of AI/ML algorithms for plant disease and pest detection and examine the role of AI/ML in supply chain management and demand forecasting in agriculture. It includes an examination of the integration of AI/ML with agricultural robotics for automation and efficiency. The authors also cover applications in livestock management, including feed formulation and disease detection; they also explore the use of AI/ML for behavior analysis and welfare assessment in livestock. Finally, the authors also explore the ethical and social implications of using such technologies.

This book can be used as a textbook for students in agricultural engineering, precision farming, and smart agriculture. It can also be a reference book for practicing professionals in machine learning, and deep learning working on sustainable agriculture applications.

Satpathy / Kumar Paikaray / Yang Sustainable Farming Through Machine Learning jetzt bestellen!

Zielgruppe


Postgraduate, Professional Practice & Development, Professional Reference, and Undergraduate Advanced

Weitere Infos & Material


1. Exploring AI and ML Strategies for Crop Health Monitoring and Management. 2. Enhancing Crop Productivity by Suitable Crop Prediction Using Cutting-Edge Technologies. 3. Crop Yield Prediction Using Machine Learning Random Forest Algorithm. 4. A multi-objective based genetic approach for increasing crop yield on sustainable farming. 5. Drones For Crop Monitoring And Analysis. 6. Decision Support System For Sustainable Farming. 7. Empowering Agriculture: Harnessing the Potential of AI-Driven Virtual Tutors for Farmer Education and Investment Strategies. 8. Enhancing Agricultural Ecosystem Surveillance through Autonomous Sensor Networks. 9. Crop Disease Detection Using Image Analysis. 10. Automated Detection of Plant Diseases Utilizing Convolutional Neural Networks. 11. Apple Leaves Diseases Detection Using Deep Learning. 12.Optimizing Agricultural Yield: Comprehensive Approaches for Recommendation System in Precision Agriculture. 13. Advancements in Precision Agriculture: A Machine Learning-based Approach for Crop Management Optimization. 14. Precision Agriculture with Remote Sensing: Integrating Deep Learning for Crop Monitoring. 15. Farmers Guide: Data-Driven Crop Recommendations for Precision and Sustainable Agriculture Using IoT and ML. 16. Application of Machine Learning in the Analysis and Prediction of Animal Disease. 17. Transforming Indian Agriculture: A Machine Learning Approach for Informed Decision-Making and Sustainable Crop Recommendations. 18. Automated Detection of Water Quality for Smart Systems using Various Sampling Techniques - An Agricultural Perspective. 19. Scope of Artificial Intelligence (A.I.) in “Agriculture Sector and its applicability in Farm Mechanization in Odisha. 20. Ethical Considerations and Social Implications.


Suneeta Satpathy, PhD, is an Associate Professor in the Center for AI & ML, Siksha ‘O’ Anusandhan (Deemed to be) University, Odisha, India. Her research interests include computer forensics, cyber security, data fusion, data mining, big data analysis, decision mining, and machine learning. She has published papers in many international journals and conferences in repute. She has two Indian patents to her credit and is a member of IEEE, CSI, ISTE, OITS, and IE.

Bijay Kumar Paikaray, PhD, is an Associate Professor at the Center for Data Science, Siksha ‘O’ Anusandhan (Deemed to be) University, Odisha. His interests include high- performance computing, information security, machine learning, and IoT.

Ming Yang has a PhD in Computer Science from Wright State University, Dayton, Ohio, US, 2006. Currently he is a Professor in the College of Computing and Software Engineering Kennesaw State University, GA, USA. His research interests include multimedia communication, digital image/ video processing, computer vision, and machine learning.

Arunkumar Balakrishnan, PhD, holds the position of Assistant Professor Senior Grade in the Computer Science and Engineering department at VIT- AP University. He obtained his PhD in Information Science and Engineering from Anna University, Chennai. He possesses 12 years of academic expertise and an additional 6 years of concurrent research experience in the domains of Cryptography, Medical Image Security, Blockchain, and NFT. His research interests encompass Cryptography, Network Security, Medical Image Encryption, Blockchain, lightweight cryptography methods, and NFT.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.