Singh / Dutta / Mukhopadhyay | Computational Intelligence in Communications and Business Analytics | Buch | 978-3-031-81335-1 | sack.de

Buch, Englisch, Band 2368, 352 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 557 g

Reihe: Communications in Computer and Information Science

Singh / Dutta / Mukhopadhyay

Computational Intelligence in Communications and Business Analytics

6th International Conference, CICBA 2024, Patna, India, January 23-25, 2024, Revised Selected Papers, Part III
Erscheinungsjahr 2025
ISBN: 978-3-031-81335-1
Verlag: Springer International Publishing

6th International Conference, CICBA 2024, Patna, India, January 23-25, 2024, Revised Selected Papers, Part III

Buch, Englisch, Band 2368, 352 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 557 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-81335-1
Verlag: Springer International Publishing


This three-volume set CCIS 2366-2368 constitutes the refereed proceedings of the 6th International Conference on Computational Intelligence in Communications and Business Analytics, CICBA 2024, held in Patna, India, during January 23–25, 2024.

The 82 full papers presented in this volume were carefully reviewed and selected from 249 submissions. Together, these papers showcase cutting-edge research in the fields of computational intelligence and business analytics, covering a broad range of topics.

Singh / Dutta / Mukhopadhyay Computational Intelligence in Communications and Business Analytics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Theories and Applications to Data Communications and Analytics.- Optuna and Decision Tree Based Network Intrusion Detection System for Internet of Things.- Restful Architecture for Achieving Syntactic Interoperability in IoT Systems.- Energy Optimized Clustering and Cluster Head Selection in WSNs an MDB-KMC and Cuttlefish Approach.- D2Stege Using Decteron2 to Segment Medical Image with Security Through Steganography and Encryption.- A Novel Chaos and DNA Computing for Medical Image Encryption.- Session Based Symmetric Key Cryptography Using Digital Circuit Based on Two Left Shift.- Digital Images Encryption Using PWLCM and Sine Map.- Hybrid Humor Classification and Detection Based on Machine Learning.- Data Anomaly Detection in Wireless Sensor Network Using Principal Component Analysis and Decision Tree.- Industry Monitoring with Data Logger in Google Sheet Using Respberry Pi.- ECCNN A Novel Efficient Compressed Convolutional Neural Network.- A Modified Low Energy Consuming Mac Protocol for Wireless Sensor Networks.- Text Data Security Through Hybrid Method Using Visual Cryptography and Image Steganography Algorithms.- CASCAIN Cascaded Attention Infused Networks for Named Entity Recognition in Code Mixed Setting.- Secure Non Fungible Token Marketplaces Using ERC 721.- A Detailed Comparative Study of Regression Models for Stock Price Prediction.- An Optimal Cluster Head Selection in UAV Networks Using Grey Wolf Optimization.- Multi Modal Probabilistic Conditional Generative Adversarial Networks for Electric Vehicles Range Prediction.- Entry Point Adaptive Keystroke Dynamics Based User Authentication for Evolving Passwords.- Malicious node detection in Industrial internet of things using swarm based optimization algorithm A cyber security perspective.- Is software defined smart grid secure An analysis of security issues and solutions.- Energy Efficiency Optimization in IoT Based Machine Learning for Smart Environmental Monitoring.- Smart Tech Cane Navigator (STCN) for Physically Challenged.- A Real Time Machine Learning based Statistical Approach for Power Generation Prediction for Solar PV Plant.- CipherCraft An Integrated Approach to Cryptographic Data Security in Modern Computing Environments.- Unveiling Dynamics of Structural Breaks in Global Stock Markets and Implications for Forecasting Accuracy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.