Singh / Dutta / Mukhopadhyay | Computational Intelligence in Communications and Business Analytics | Buch | 978-3-031-81341-2 | sack.de

Buch, Englisch, Band 2366, 366 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 593 g

Reihe: Communications in Computer and Information Science

Singh / Dutta / Mukhopadhyay

Computational Intelligence in Communications and Business Analytics

6th International Conference, CICBA 2024, Patna, India, January 23-25, 2024, Revised Selected Papers, Part I
Erscheinungsjahr 2025
ISBN: 978-3-031-81341-2
Verlag: Springer Nature Switzerland

6th International Conference, CICBA 2024, Patna, India, January 23-25, 2024, Revised Selected Papers, Part I

Buch, Englisch, Band 2366, 366 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 593 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-81341-2
Verlag: Springer Nature Switzerland


This three-volume set CCIS 2366-2368 constitutes the refereed proceedings of the 6th International Conference on Computational Intelligence in Communications and Business Analytics, CICBA 2024, held in Patna, India, during January 23–25, 2024.

The 82 full papers presented in this volume were carefully reviewed and selected from 249 submissions. Together, these papers showcase cutting-edge research in the fields of computational intelligence and business analytics, covering a broad range of topics.

Singh / Dutta / Mukhopadhyay Computational Intelligence in Communications and Business Analytics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Computational Intelligence I.- Depression Clinic People's Mental Health Prediction Using Information from Online Social Media Networks (OSN).- A Novel Hindi Voice Based Assistant System Architecture for E Commerce.- Early Classification of Alzheimer’s Disease Using Deep Learning Technique.- Spoken Metro Station Name Identification A Deep Learning Based Approach.- EDR DT A Novel Energy Function Based Enhanced Decision Tree Model for Classification.- Enhancing Agriculture Using Machine Learning Powered Smart Agricultural Systems.- Classification Of Tomato Maturity Levels An Efficient Approach with Statistical Features.- Iot Based Multifunctional Agriculture Monitoring and Smart Irrigation System.- Covid Ct H Unet A Novel Covid 19 CT Segmentation Network Based on Attention Mechanism and Bi Category Hybrid Loss.- A Review on The Efficacy of Different Data Augmentation Technique for Deep Learning.- MLAEDensenet Multi Layer Attention Enhanced Densenet for Efficient Video Action Recognition.- Word Sense Disambiguation for Bodo Language Using Simplified Lesk.- Smali Code Based Fake Application Detection.- From Haze and Smoke to Clarity An Integration of Deep Learning and Atmospheric Model.- Integrating BiLSTM BiGRU with Autoencoders for Enhanced Feature Representation and Deep Q Networks for Clinical Event Classification in Medical Records.- Agile Development Using A Hybrid Approach For Cost Estimation of IT Projects.- Lung Cancer Diagnosis Using Image Enhancement and Machine Learning Methods.- An Ml Based Hybrid Model for IIoT Attack Classification in Industry 4.0 Ecosystem.- Design of an explainable AI Model with Q Convolutional Neural Networks for Patient Health Reporting.- Convolutional Neural Networks for Patient.- Enhancing Visual Question Answering with Beam Search in Transformer Models.- Analyzing The Effect of Coffee Consumption on Visual Pathway Using Visual Evoked Potential (VEP) Signals and Machine Learning Algorithms.- A Survey on Machine Learning Techniques for Recognizing Human Activities Using Smartphone Data.- Digital Twin for Diabetes Management Using System Dynamics Simulation The Case of India.- Analysis Of Occupational Stress Effects and Coping Among Prison Officers A Case of RAK Prison Centre, United Arab Emirates.- Custom Ensemble Machine Learning Algorithm for Interactive Symptom Based Disease Prediction.- Leveraging Handwriting Dynamics, Explainable AI And Machine Learning for Alzheimer Prediction.- Machine Learning Powered Insights A Comprehensive Survey on Pcos Detection and Diagnosis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.