Srivatsan | Advances in Understanding the Fatigue Behavior of Materials | Buch | 978-0-87849-394-4 | sack.de

Buch, Englisch, 420 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 900 g

Srivatsan

Advances in Understanding the Fatigue Behavior of Materials

Special topic volume with invited papers only.

Buch, Englisch, 420 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 900 g

ISBN: 978-0-87849-394-4
Verlag: Trans Tech Publications


This special-topic book consists of a collection of technical papers assembled under the rubric of “Advances in Understanding the Fatigue Behavior of Materials”. The focus of “Fatigue Behavior of Materials” centers on the changes in properties that occur upon applying cyclic loads. Following its recognition and increasing importance during the latter half of the nineteenth century, this branch of study has focused upon the study and rationalization of the engineering approaches that are commonly used to design against the initiation and/or propagation of the fatigue damage which would otherwise culminate in catastrophic failure.
Srivatsan Advances in Understanding the Fatigue Behavior of Materials jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface
Section 1: FERROUS ALLOYS
The Fatigue Behavior of Steel Structures under Random Loading
Low Cycle Fatigue Behavior and Microcracks Nucleation on Duplex Stainless Steels
High Cycle Fatigue Behavior of Normalized 0.15% C Steel under Tension-Compression and Torsion Loading
On the Cyclic Stability and Fatigue Performance of Ultrafine-Grained Interstitial-Free Steel under Mean Stress
Fatigue Crack Growth Resistance of Special Nodular Cast Irons
Internal Fatigue Failure Mechanism of High Strength Steels in Gigacycle Regime
Advances in Cyclic Behavior and Lifetime Modeling of Tempered Martensitic Steels Based on Microstructural Considerations
The Fatigue Properties of Duplex Stainless Steels: Role of Microstructure
Section 2: NON-FERROUS ALLOYS
Comparison of the Fatigue Crack Propagation Resistance of a+ß and ß Titanium Alloys
High Cycle Fatigue Behavior of Magnesium Alloys under Corrosive Environment
The Fretting Fatigue Behavior of Ti-6Al-4V
Cyclic Depth-Sensing Indentation of Gold Wire
The High Cycle Fatigue and Fracture Behavior of Friction Stir Welded Aluminum Alloy 2024
An Investigation of the High Cycle Fatigue and Final Fracture Behavior of Aluminum Alloy 2219
Low Cycle Fatigue in Model Al-Si Alloys. A Contribution to the Understanding of Cyclic Damage in Two Phase Materials
High Temperature Low-Cycle Fatigue, Deformation Microstructure and Final Fracture Behavior of a Nickel-Base Superalloy
An Investigation of the Cyclic Fatigue and Final Fracture Behavior of a Titanium Alloy
Section 3: EMERGING MATERIALS
Understanding the Fatigue Behaviour of NiTiCu Shape Memory Alloy Wire Thermal Actuators
Mechanisms and Mechanics of Fatigue Crack Propagation in Zr-Based Bulk Metallic Glass
Direct Comparisons of the Fatigue Behavior of Bulk-Metallic Glasses and Crystalline Alloys
Section 4: ALTERNATIVE NOVEL APPROACHES TO STUDYING FATIGUE
Surface Cracks in Round Bars under Cyclic Tension or Bending
Some Applications of Fractal Fracture Mechanics to Describe the Fatigue Behaviour of Materials
A Study of Fatigue (Cyclic Deformation) Behavior in FCC Metals Using Strain Rate Change Tests
A Dissipated Energy Approach to Fatigue Crack Growth in Ductile Solids and Layered Materials


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.