Tang / Chen / Lin | Health Information Processing | Buch | 978-981-19-9864-5 | sack.de

Buch, Englisch, Band 1772, 212 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 353 g

Reihe: Communications in Computer and Information Science

Tang / Chen / Lin

Health Information Processing

8th China Conference, CHIP 2022, Hangzhou, China, October 21-23, 2022, Revised Selected Papers
1. Auflage 2023
ISBN: 978-981-19-9864-5
Verlag: Springer Nature Singapore

8th China Conference, CHIP 2022, Hangzhou, China, October 21-23, 2022, Revised Selected Papers

Buch, Englisch, Band 1772, 212 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 353 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-19-9864-5
Verlag: Springer Nature Singapore


This book constitutes refereed proceedings of the 8th China Conference on China Health Information Processing Conference 2022 held in Hangzhou, China from August 26–28, 2022.

The 14 full papers presented in this volume were carefully reviewed and selected from a total of 35 submissions. The papers in the volume are organised according to the following topical headings: healthcare natural language processing;healthcare data mining and applications

Tang / Chen / Lin Health Information Processing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Healthcare Natural Language Processing.- Corpus Construction for Named-Entity and Entity Relations for Electronic Medical Records of Cardiovascular Disease.- Hybrid Granularity-based medical event extraction in Chinese electronic medical records.- Infusing Dependency Syntax Information into a Transformer Model for Document-Level Relation Extraction from Biomedical Literature.- A Review of Biomedical Event Trigger Word Detection.- BG-INT: An Entity Alignment Interaction Model Based on BERT and GCN.- An Semantic Similarity Matching Method for Chinese Medical Question Text.- A Biomedical Named Entity Recognition Framework with Multi-Granularity Prompt Tuning.- Healthcare Data Mining and Applications.- Automatic Extraction of Genomic Variants for Locating Precision Oncology Clinical Trials.- Identification of sepsis subphenotypes based on bi-directional long short-term memory Auto-Encoder using real-time laboratory data collected from intensive care units.- Machine Learning for Multimodal Electronic Health Records-based Research: Challenges and Perspectives.- An End-to-End Knowledge Graph Based Question Answering Approach for COVID-19.- Discovering Combination Patterns of Traditional Chinese Medicine for the Treatment of Gouty Arthritis with Renal Dysfunction.- Automatic Classification of Nursing Adverse Events Using a Hybrid Neural Network Model.- Node research on the involvement of China’s carbon tax policy in the context of COVID-19.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.