Tsapatsoulis / Lanitis / Pattichis | Computer Analysis of Images and Patterns | E-Book | sack.de
E-Book

E-Book, Englisch, Band 14185, 279 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Tsapatsoulis / Lanitis / Pattichis Computer Analysis of Images and Patterns

20th International Conference, CAIP 2023, Limassol, Cyprus, September 25–28, 2023, Proceedings, Part II
1. Auflage 2023
ISBN: 978-3-031-44240-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

20th International Conference, CAIP 2023, Limassol, Cyprus, September 25–28, 2023, Proceedings, Part II

E-Book, Englisch, Band 14185, 279 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-44240-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume LNCS 14184 and 14185 constitutes the refereed proceedings of the 20th International Conference, CAIP 2023, in Limassol, Cyprus, in September 2023.  

The 54 full papers presented were carefully reviewed and selected from 67 submissions. They were organized in the following section as follows:

Part I: PAR Contest 2023; Deep Learning; Machine Learning for Image and Pattern Analysis; and Object Recognition and Segmentation.

Part II : Biometrics- Human Pose Estimation- Action Recognition; Biomedical Image and Pattern Analysis; and General Vision- AI Applications.

Tsapatsoulis / Lanitis / Pattichis Computer Analysis of Images and Patterns jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Biometrics  - Human Pose Estimation - Action Recognition
.- A Systematic Approach for Automated Lecture Style Evaluation Using Biometric Features.- Highly crowd detection and counting based on curriculum learning.- Race Bias Analysis of Bona Fide Errors in Face Anti-spoofing.- Fall detection with event-based data: A case study.- Towards Accurate and Efficient Sleep Period Detection using Wearable Devices.- RLSTM: A Novel Residual and Recurrent Network for Pedestrian Action Classification.- 
Biomedical Image and Pattern Analysis
.- Temporal Sequences of EEG Covariance Matrices for Automated Sleep Stage Scoring with Attention Mechanisms.- Complete AI-based System for Dietary Assessment and Personalized Insulin Adjustment in Type 1 Diabetes Self-Management.- COFI - Coarse-semantic to fine-instance unsupervised mitochondria segmentation in EM.- Empirical study of attention-based models for automatic classification of gastrointestinal endoscopy images.- Classification of Breast Micro-Calcifications as Benign or Malignant using Subtraction of Temporally Sequential Digital Mammograms and Machine Learning.- Fourier Descriptor Loss and Polar Coordinate Transformation for Pericardium Segmentation.- Stroke Risk Stratification Using Transfer Learning on Carotid Ultrasound Images.- Comparative Study of Explainable AI models in the assessment of Multiple Sclerosis.- 
General Vision - AI Applications
.- Biometric Recognition of African Clawed Frogs.- Teacher-Student synergetic knowledge distillation for  detecting alcohol consumption in NIR iris Images.- Performance Assessment of Fine-tuned Barrier Recognition Models in Varying Conditions.- Keyrtual: A Lightweight Virtual Musical Keyboard based on RGB-D and Sensors Fusion.- Classification of Honey Pollens with ImageNet Neural Networks.- Defocus Blur Synthesis and Deblurring via Interpolation and Extrapolation in Latent Space.- Unsupervised Representation Learning in Partially Observable Atari Games.- Structural Analysis of the Additive Noise Impact on the a-tree.- Augmented Reality for indoor localization and navigation: the case of UNIPI AR Experience.- A Benchmark and Investigation of Deep-Learning-Based Techniques for Detecting Natural Disasters in Aerial Images.- Perceptual Light Field Image Coding with CTU Level Bit Allocation.- Comparative Performance Assessment of Different Video Codecs.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.