Voevodin / Sobolev / Yakobovskiy | Supercomputing | E-Book | sack.de
E-Book

E-Book, Englisch, Band 14389, 332 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Voevodin / Sobolev / Yakobovskiy Supercomputing

9th Russian Supercomputing Days, RuSCDays 2023, Moscow, Russia, September 25–26, 2023, Revised Selected Papers, Part II
1. Auflage 2023
ISBN: 978-3-031-49435-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

9th Russian Supercomputing Days, RuSCDays 2023, Moscow, Russia, September 25–26, 2023, Revised Selected Papers, Part II

E-Book, Englisch, Band 14389, 332 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-49435-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The two-volume set LNCS 14388 and 14389 constitutes the refereed proceedings of the 9th Russian Supercomputing Days International Conference (RuSCDays 2023) held in Moscow, Russia, during September 25-26, 2023.The 44 full papers and 1 short paper presented in these proceedings were carefully reviewed and selected from 104 submissions. The papers have been organized in the following topical sections: supercomputer simulation; distributed computing; and HPC, BigData, AI: algorithms, technologies, evaluation.
Voevodin / Sobolev / Yakobovskiy Supercomputing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Distributed Computing: Benchmarking DAG Scheduling Algorithms on Scientific Workflow Instances.- Classification of Cells Mapping Schemes Related to Orthogonal Diagonal Latin Squares of Small Order.- Comparative Analysis of Digitalization Efficiency Estimation Methods using Desktop Grid.- Diagonalization and Canonization of Latin Squares.- Probabilistic Modeling of the Behavior of a Computing Node in the Absence of Tasks on the Project Server.- Using Virtualization Approaches to Solve Deep Learning Problems in Voluntary Distributed Computing Projects.- Workflows of the High-Throughput Virtual Screening as a Service.- HPC, BigData, AI: Algorithms, Technologies, Evaluation: 3D Seismic Inversion for Fracture Model Reconstruction Based on Machine Learning.- A Computational Model for Interactive Visualization of High-Performance Computations.- An Algorithm for Mapping of Global Adjacency Lists to Local Numeration in a Distributed Graph in the GridSpiderPar Tool.- Construction of Locality-Aware Algorithms to Optimize Performance of Stencil Codes on Heterogeneous Hardware.- Development of Components for Monitoring and Control Intelligent Information System.- Image Segmentation Algorithms Composition for Obtaining Accurate Masks of Tomato Leaf Instances.- Implementation of Dusty Gas Model Based on Fast and Implicit Particle-Mesh Approach SPH-IDIC in Open-Source Astrophysical Code GADGET-2.- MDProcessing.jl: Julia Programming Language Application for Molecular Dynamics Trajectory Processing.- Methods and Algorithms for Intelligent Video Analytics in the Context of Solving Problems of Precision Pig Farming.- Nucleic Acid-Protein Interaction Prediction Using Geometric Deep Learning.- Parallel Algorithm for Incompressible Flow Simulation Based on the LS-STAG and Domain Decomposition Methods.- Parallel Algorithm for Source Type Recovering by the Time Reversal Mirror.- Recognition of Medical Masks on People’s Faces in Difficult Decision-making Conditions.- Use of Different Metrics to Generate Training Datasets for a Numerical Dispersion Mitigation Neural Network.- Validity and Limitations of Supervised Learning for Phase Transition Research.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.