Washio / Luo | Emerging Trends in Knowledge Discovery and Data Mining | E-Book | sack.de
E-Book

E-Book, Englisch, 157 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

Washio / Luo Emerging Trends in Knowledge Discovery and Data Mining

PAKDD 2012 International Workshops: DMHM, GeoDoc, 3Clust, and DSDM, Kuala Lumpur, Malaysia, May 29 -- June 1, 2012, Revised Selected Papers
Erscheinungsjahr 2013
ISBN: 978-3-642-36778-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

PAKDD 2012 International Workshops: DMHM, GeoDoc, 3Clust, and DSDM, Kuala Lumpur, Malaysia, May 29 -- June 1, 2012, Revised Selected Papers

E-Book, Englisch, 157 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-642-36778-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the thoroughly refereed proceedings of the PAKDD 2012 International Workshops: Third Workshop on Data Mining for Healthcare Management (DMHM 2012), First Workshop on Geospatial Information and Documents (GeoDoc 2012), First Workshop on Multi-view data, High-dimensionality, External Knowledge: Striving for a Unified Approach to Clustering (3Clust 2012), and the Second Doctoral Symposium on Data Mining (DSDM 2012); held in conjunction with the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2012), in Kuala Lumpur, Malaysia, May/June 2012.

The 12 revised papers presented were carefully reviewed and selected from numerous submissions. DMHM 2012 aimed at providing a common platform for the discussion of challenging issues and potential techniques in this emerging field of data mining for health care management; 3Clust 2012 focused on solving emerging problems such as clustering ensembles, semi-supervised clustering, subspace/projective clustering, co-clustering, and multi-view clustering; GeoDoc 2012 highlighted the formalization of geospatial concepts and relationships with a focus on the extraction of geospatial relations in free text datasets to offer to the database community a unified framework for geodata discovery; and DSDM 2012 provided the opportunity for Ph.D. students and junior researchers to discuss their work on data mining foundations, techniques and applications.

Washio / Luo Emerging Trends in Knowledge Discovery and Data Mining jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Modality Classification for Medical Images Using Sparse Coded Affine-Invariant Descriptors.- Mining Web Data for Epidemiological Surveillance.- Getting a Grasp on Clinical Pathway Data: An Approach Based on Process Mining.- ALIVE: A Multi-relational Link Prediction Environment for the Healthcare Domain.- The Relevance of Spatial Relation Terms and Geographical Feature Types.- Applying NLP Techniques for Query Reformulation to Information Retrieval with Geographical References.- Adaptive Evidence Accumulation Clustering Using the Confidence of the Objects’ Assignments.- An Explicit Description of the Extended Gaussian Kernel.- An Improved Genetic Clustering Algorithm for Categorical Data.- Instance-Ranking: A New Perspective to Consider the Instance Dependency for Classification.- Triangular Kernel Nearest-Neighbor-Based Clustering Algorithm for Discovering True Clusters.- 
DisClose
:
Dis
covering Colossal
Closed
Itemsets via a Memory Efficient Compact Row-Tree.- Mining Web Data for Epidemiological Surveillance.- Getting a Grasp on Clinical Pathway Data: An Approach Based on Process Mining.- ALIVE: A Multi-relational Link Prediction Environment for the Healthcare Domain.- The Relevance of Spatial Relation Terms and Geographical Feature Types.- Applying NLP Techniques for Query Reformulation to Information Retrieval with Geographical References.- Adaptive Evidence Accumulation Clustering Using the Confidence of the Objects’ Assignments.- An Explicit Description of the Extended Gaussian Kernel.- An Improved Genetic Clustering Algorithm for Categorical Data.- Instance-Ranking: A New Perspective to Consider the Instance Dependency for Classification.- Triangular Kernel Nearest-Neighbor-Based Clustering Algorithm for Discovering True Clusters.- 
DisClose
:
Dis
covering Colossal
Closed
Itemsets via a Memory Efficient Compact Row-Tree.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.