Weiss / Indurkhya / Zhang | Fundamentals of Predictive Text Mining | E-Book | sack.de
E-Book

E-Book, Englisch, 239 Seiten, eBook

Reihe: Texts in Computer Science

Weiss / Indurkhya / Zhang Fundamentals of Predictive Text Mining


2. Auflage 2015
ISBN: 978-1-4471-6750-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 239 Seiten, eBook

Reihe: Texts in Computer Science

ISBN: 978-1-4471-6750-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.
Weiss / Indurkhya / Zhang Fundamentals of Predictive Text Mining jetzt bestellen!

Zielgruppe


Upper undergraduate

Weitere Infos & Material


Overview of Text Mining.- From Textual Information to Numerical Vectors.- Using Text for Prediction.- Information Retrieval and Text Mining.- Finding Structure in a Document Collection.- Looking for Information in Documents.- Data Sources for Prediction: Databases, Hybrid Data and the Web.- Case Studies.- Emerging Directions.


Dr. Sholom M. Weiss
is a Professor Emeritus of Computer Science at Rutgers University, a Fellow of the Association for the Advancement of Artificial Intelligence, and co-founder of AI Data-Miner LLC, New York.
Dr. Nitin Indurkhya
 is faculty member at the School of Computer Science and Engineering, University of New South Wales, Australia, and the Institute of Statistical Education, Arlington, VA, USA. He is also a co-founder of AI Data-Miner LLC, New York.
Dr. Tong Zhang
 is a Professor of Statistics and Biostatistics at Rutgers University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.