Wu / Chen / Jiang | Modern Computational Approaches to Traditional Chinese Medicine | Buch | 978-0-323-28272-7 | sack.de

Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 460 g

Wu / Chen / Jiang

Modern Computational Approaches to Traditional Chinese Medicine


Erscheinungsjahr 2012
ISBN: 978-0-323-28272-7
Verlag: William Andrew Publishing

Buch, Englisch, Format (B × H): 152 mm x 229 mm, Gewicht: 460 g

ISBN: 978-0-323-28272-7
Verlag: William Andrew Publishing


Recognized as an essential component of Chinese culture, Traditional Chinese Medicine (TCM) is both an ancient medical system and one still used widely in China today. TCM's independently evolved knowledge system is expressed mainly in the Chinese language and the information is frequently only available through ancient classics and confidential family records, making it difficult to utilize. The major concern in TCM is how to consolidate and integrate the data, enabling efficient retrieval and discovery of novel knowledge from the dispersed data. Computational approaches such as data mining, semantic reasoning and computational intelligence have emerged as innovative approaches for the reservation and utilization of this knowledge system. Typically, this requires an inter-disciplinary approach involving Chinese culture, computer science, modern healthcare and life sciences. This book examines the computerization of TCM information and knowledge to provide intelligent resources and supporting evidences for clinical decision-making, drug discovery, and education. Recent research results from the Traditional Chinese Medicine Informatics Group of Zhejiang University are presented, gathering in one resource systematic approaches for massive data processing in TCM. These include the utilization of modern Semantic Web and data mining methods for more advanced data integration, data analysis and integrative knowledge discovery. This book will appeal to medical professionals, life sciences students, computer scientists, and those interested in integrative, complementary, and alternative medicine.
Wu / Chen / Jiang Modern Computational Approaches to Traditional Chinese Medicine jetzt bestellen!

Zielgruppe


<p>Researchers and professionals working in medical fields and computer science</p>

Weitere Infos & Material


1. Overview on Knowledge Discovery in Traditional Chinese Medicine
2. Integrative Mining of Traditional Chinese Medicine Literature and MEDLINE for Functional Gene Networks
3. MapReduce-based Network Motif Detection for Traditional Chinese Medicine
4. Data Quality for Knowledge Discovery in Traditional Chinese Medicine
5. Service-oriented Data Mining in Traditional Chinese Medicine
6. Semantic E-Science for Traditional Chinese Medicine
7. Ontology Development for Unified Traditional Chinese Medical Language System
8. Causal Knowledge Modeling for Traditional Chinese Medicine Using OWL
9. Dynamic Sub-ontology Evolution for Traditional Chinese Medicine Web Ontology
10. Semantic Association Mining for Traditional Chinese Medicine
11. Semantic-based Database Integration for Traditional Chinese Medicine
12. Probabilistic Semantic Relation Discovery from Traditional Chinese Medical Literatures
13. Deriving Similarity Graphs from Traditional Chinese Medicine Linked Data on Semantic Web


Wu, Zhaohui
Department of Computer Science, Zhejiang University, Hangzhou, China

Chen, Huajun
Department of Computer Science, Zhejiang University, Hangzhou, China


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.