Buch, Englisch, 326 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 500 g
Concepts, Algorithms, and Case Studies
Buch, Englisch, 326 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 500 g
Reihe: Chapman & Hall/CRC Biostatistics Series
ISBN: 978-1-032-17786-1
Verlag: Chapman and Hall/CRC
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development.
Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems.
Features
- Provides a single source of information on Bayesian statistics for drug development
- Covers a wide spectrum of pre-clinical, clinical, and CMC topics
- Demonstrates proper Bayesian applications using real-life examples
- Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms
- Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge
Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University.
Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Pharmazie
- Mathematik | Informatik Mathematik Stochastik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Pharmakologie, Toxikologie
Weitere Infos & Material
Background. Drug Research and Development. Basics of Bayesian analysis. Bayesian Estimation of Sample Size and Power. Pre-Clinical and Clinical Research. Pre-clinical efficacy study. Futility analysis. Phase 3 Clinical Trial. Chemistry, Manufacturing, and Control. Analytical method. Process Development. Bayesian Approach to Statistical Process Control.