E-Book, Englisch, Band 51, 605 Seiten, eBook
Yang / Ong / Jin Evolutionary Computation in Dynamic and Uncertain Environments
Erscheinungsjahr 2007
ISBN: 978-3-540-49774-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 51, 605 Seiten, eBook
Reihe: Studies in Computational Intelligence
ISBN: 978-3-540-49774-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Optimum Tracking in Dynamic Environments.- Explicit Memory Schemes for Evolutionary Algorithms in Dynamic Environments.- Particle Swarm Optimization in Dynamic Environments.- Evolution Strategies in Dynamic Environments.- Orthogonal Dynamic Hill Climbing Algorithm: ODHC.- Genetic Algorithms with Self-Organizing Behaviour in Dynamic Environments.- Learning and Anticipation in Online Dynamic Optimization.- Evolutionary Online Data Mining: An Investigation in a Dynamic Environment.- Adaptive Business Intelligence: Three Case Studies.- Evolutionary Algorithms for Combinatorial Problems in the Uncertain Environment of the Wireless Sensor Networks.- Approximation of Fitness Functions.- Individual-based Management of Meta-models for Evolutionary Optimization with Application to Three-Dimensional Blade Optimization.- Evolutionary Shape Optimization Using Gaussian Processes.- A Study of Techniques to Improve the Efficiency of a Multi-Objective Particle Swarm Optimizer.- An Evolutionary Multi-objective Adaptive Meta-modeling Procedure Using Artificial Neural Networks.- Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design.- Handling Noisy Fitness Functions.- Hierarchical Evolutionary Algorithms and Noise Compensation via Adaptation.- Evolving Multi Rover Systems in Dynamic and Noisy Environments.- A Memetic Algorithm Using a Trust-Region Derivative-Free Optimization with Quadratic Modelling for Optimization of Expensive and Noisy Black-box Functions.- Genetic Algorithm to Optimize Fitness Function with Sampling Error and its Application to Financial Optimization Problem.- Search for Robust Solutions.- Single/Multi-objective Inverse Robust Evolutionary Design Methodology in the Presence of Uncertainty.- Evolving the Tradeoffs between Pareto-Optimality andRobustness in Multi-Objective Evolutionary Algorithms.- Evolutionary Robust Design of Analog Filters Using Genetic Programming.- Robust Salting Route Optimization Using Evolutionary Algorithms.- An Evolutionary Approach For Robust Layout Synthesis of MEMS.- A Hybrid Approach Based on Evolutionary Strategies and Interval Arithmetic to Perform Robust Designs.- An Evolutionary Approach for Assessing the Degree of Robustness of Solutions to Multi-Objective Models.- Deterministic Robust Optimal Design Based on Standard Crowding Genetic Algorithm.