Yu / Cai / Huang | Computer Applications | Buch | 978-981-97-9670-0 | sack.de

Buch, Englisch, Band 2274, 379 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 604 g

Reihe: Communications in Computer and Information Science

Yu / Cai / Huang

Computer Applications

39th CCF National Conference of Computer Applications, CCF NCCA 2024, Harbin, China, July 15-18, 2024, Proceedings, Part I
2025
ISBN: 978-981-97-9670-0
Verlag: Springer Nature Singapore

39th CCF National Conference of Computer Applications, CCF NCCA 2024, Harbin, China, July 15-18, 2024, Proceedings, Part I

Buch, Englisch, Band 2274, 379 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 604 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-97-9670-0
Verlag: Springer Nature Singapore


This two-volume set, CCIS 2274 and CCIS 2275, constitutes the refereed proceedings of the 39th National Conference on China Computer Federation, CCF NCCA 2024, held in Harbin, China, during July 15–18, 2024.

The 48 full papers presented here were carefully reviewed and selected from 238 submissions. These papers are organized in the following topical sections:

Part I: Artificial Intelligence and Applications; Data Science and Technology.

Part II: Pattern Recognition & Machine Learning; Network Communication and Security; Frontier and Comprehensive Applications; Data Science and Technology.

Yu / Cai / Huang Computer Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Artificial Intelligence and Applications.- On the Behaviors of Fuzzy Knowledge Graphs.- Research and Development of a Voice Interaction Platform for Medical Assistive Robots Based on ROS.- A Rule Based Multidimensional Axiomatic Fuzzy Det Knowledge Graph Question Answering Model.- Multi Population Evolutionary Computation Based on Lethal Chromosome and Its Application in Path Planning.- Few Shot Knowledge Graph Completion Based on Selective Attention and the Transformer.- Node Embedding of the Abstract Syntax Tree for Source Code Representation.- End to End Deep Reinforcement Learning for Inclined Ladder Steps Grasping in Humanoid Robots.- Cooperative Coverage Path Planning for Air Ground Heterogeneous Robots in Aircraft Skin Inspection Tasks.- A Redis Cache Based Approach to High Concurrency Response in Applications of Large Language Models.- Research and Application Status of Tendency Based Gas Source Localization Strategy Using Active Olfaction Method A Review.- Exploring Named Entity Recognition in Medical Knowledge Graphs with Pre Trained Language Models and Attention Mechanism.- A Text Oriented Transformer with an Image Aesthetics Assessment Fusion Network for Visual Textual Sentiment Analysis.- Coverage Path Planning for Aircraft Skin Inspection UGV under Curvature Constraints.- Less Hallucination and More Factuality Human Values Alignment in Text Summarization.- Chinese Korean Cross Language Transfer Method Based on Language Features.- A Knowledge Enhanced Text Clustering Based Adversarial Learning for Text Generation.- Dialogue Understanding and Generation Of Sequence Template and Path Retrieval Based on Knowledge Enhancement.- DGCBA A Novel Medical Point Cloud Segmentation Network Based on Dilated Graph Convolution and Boundary Awareness.- Question Guided Hybrid Learning and Knowledge Embedding for Visual Question Answering Visual Question Answering.- Integrating Image Super Resolution Network and Semantic Segmentation for 3D Reconstruction of Medical Sequence Image.- Data Science and Technology.- Data Sources and Fast Preprocessing of Shoreline and Bathymetric Data from the Coastal Ocean Numerical Model: Examples of the Pearl River Estuary.- GPRSTA A Style Transfer Algorithm for Enhancing GPR Data in Airport Runway Structural Defect Detection.- Research on Prediction of Missing Values Based on Multiple Models.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.