Yu / Li | Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS | Buch | 978-0-367-36547-9 | sack.de

Buch, Englisch, 294 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 608 g

Reihe: Chapman & Hall/CRC Biostatistics Series

Yu / Li

Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS


1. Auflage 2022
ISBN: 978-0-367-36547-9
Verlag: Chapman and Hall/CRC

Buch, Englisch, 294 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 608 g

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-0-367-36547-9
Verlag: Chapman and Hall/CRC


Third-variable effect refers to the effect transmitted by third-variables that intervene in the relationship between an exposure and a response variable. Differentiating between the indirect effect of individual factors from multiple third-variables is a constant problem for modern researchers.

Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS introduces general definitions of third-variable effects that are adaptable to all different types of response (categorical or continuous), exposure, or third-variables. Using this method, multiple third- variables of different types can be considered simultaneously, and the indirect effect carried by individual third-variables can be separated from the total effect. Readers of all disciplines familiar with introductory statistics will find this a valuable resource for analysis.

Key Features:

- Parametric and nonparametric method in third variable analysis

- Multivariate and Multiple third-variable effect analysis

- Multilevel mediation/confounding analysis

- Third-variable effect analysis with high-dimensional data Moderation/Interaction effect analysis within the third-variable analysis

- R packages and SAS macros to implement methods proposed in the book

Yu / Li Statistical Methods for Mediation, Confounding and Moderation Analysis Using R and SAS jetzt bestellen!

Zielgruppe


Postgraduate and Professional


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction  2 A Review of Third-Variable Effect Inferences  3 Advanced Statistical Modeling and Machine Learning Methods Used in the Book  4 The General Third-Variable Effect Analysis Method  5 The Implementation of General Third-Variable Effect Analysis Method  6 Assumptions for the General Third-Variable Analysis  7 Multiple Exposures and Multivariate Responses  8 Regularized Third-Variable Effect Analysis for High-Dimensional Dataset  9 Interaction/Moderation Analysis with Third-Variable Effects  10 Third-Variable Effect Analysis with Multilevel Additive Models  11 Bayesian Third-Variable Effect Analysis  12 Other Issues


Qingzhao Yu is Professor in Biostatistics, Louisiana State University Health Sciences Center.

Bin Li is Associate Professor in Statistics, Louisiana State University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.