Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1210 g
Computational Intelligence with Support Vector Machines
Buch, Englisch, 244 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1210 g
ISBN: 978-3-540-77802-8
Verlag: Springer Berlin Heidelberg
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensfinanzen Finanzierung, Investition, Leasing
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Mathematik | Informatik EDV | Informatik Informatik
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Finanzsektor & Finanzdienstleistungen: Allgemeines
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Unternehmensfinanzierung
Weitere Infos & Material
Credit Risk Analysis with Computational Intelligence: An Analytical Survey.- Credit Risk Analysis with Computational Intelligence: A Review.- Unitary SVM Models with Optimal Parameter Selection for Credit Risk Evaluation.- Credit Risk Assessment Using a Nearest-Point-Algorithm-based SVM with Design of Experiment for Parameter Selection.- Credit Risk Evaluation Using SVM with Direct Search for Parameter Selection.- Hybridizing SVM and Other Computational Intelligent Techniques for Credit Risk Analysis.- Hybridizing Rough Sets and SVM for Credit Risk Evaluation.- A Least Squares Fuzzy SVM Approach to Credit Risk Assessment.- Evaluating Credit Risk with a Bilateral-Weighted Fuzzy SVM Model.- Evolving Least Squares SVM for Credit Risk Analysis.- SVM Ensemble Learning for Credit Risk Analysis.- Credit Risk Evaluation Using a Multistage SVM Ensemble Learning Approach.- Credit Risk Analysis with a SVM-based Metamodeling Ensemble Approach.- An Evolutionary-Programming-Based Knowledge Ensemble Model for Business Credit Risk Analysis.- An Intelligent-Agent-Based Multicriteria Fuzzy Group Decision Making Model for Credit Risk Analysis.