Zaiane / Srivastava / Spiliopoulou | WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles | E-Book | sack.de
E-Book

E-Book, Englisch, 183 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

Zaiane / Srivastava / Spiliopoulou WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles

4th International Workshop, Edmonton, Canada, July 23, 2002, Revised Papers
2003
ISBN: 978-3-540-39663-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

4th International Workshop, Edmonton, Canada, July 23, 2002, Revised Papers

E-Book, Englisch, 183 Seiten, eBook

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-540-39663-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



1 WorkshopTheme Data mining as a discipline aims to relate the analysis of large amounts of user data to shed light on key business questions. Web usage mining in particular, a relatively young discipline, investigates methodologies and techniques that - dress the unique challenges of discovering insights from Web usage data, aiming toevaluateWebusability,understandtheinterestsandexpectationsofusersand assess the e?ectiveness of content delivery. The maturing and expanding Web presents a key driving force in the rapid growth of electronic commerce and a new channel for content providers. Customized o?ers and content, made possible by discovered knowledge about the customer, are fundamental for the establi- ment of viable e-commerce solutions and sustained and e?ective content delivery in noncommercial domains. Rich Web logs provide companies with data about their online visitors and prospective customers, allowing microsegmentation and personalized interactions. While Web mining as a domain is several years old, the challenges that characterize data analysis in this area continue to be formidable. Though p- processing data routinely takes up a major part of the e?ort in data mining, Web usage data presents further challenges based on the di?culties of assigning data streams to unique users and tracking them over time. New innovations are required to reliably reconstruct sessions, to ascertain similarity and di?erences between sessions, and to be able to segment online users into relevant groups.
Zaiane / Srivastava / Spiliopoulou WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and Profiles jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


LumberJack: Intelligent Discovery and Analysis of Web User Traffic Composition.- Mining eBay: Bidding Strategies and Shill Detection.- Automatic Categorization of Web Pages and User Clustering with Mixtures of Hidden Markov Models.- Web Usage Mining by Means of Multidimensional Sequence Alignment Methods.- A Customizable Behavior Model for Temporal Prediction of Web User Sequences.- Coping with Sparsity in a Recommender System.- On the Use of Constrained Associations for Web Log Mining.- Mining WWW Access Sequence by Matrix Clustering.- Comparing Two Recommender Algorithms with the Help of Recommendations by Peers.- The Impact of Site Structure and User Environment on Session Reconstruction in Web Usage Analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.