Zhou | Ensemble Methods | Buch | 978-1-032-96060-9 | sack.de

Buch, Englisch, 364 Seiten, Format (B × H): 242 mm x 163 mm, Gewicht: 700 g

Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition

Zhou

Ensemble Methods

Foundations and Algorithms
2. Auflage 2025
ISBN: 978-1-032-96060-9
Verlag: Taylor & Francis Ltd

Foundations and Algorithms

Buch, Englisch, 364 Seiten, Format (B × H): 242 mm x 163 mm, Gewicht: 700 g

Reihe: Chapman & Hall/CRC Machine Learning & Pattern Recognition

ISBN: 978-1-032-96060-9
Verlag: Taylor & Francis Ltd


Ensemble methods that train multiple learners and then combine them to use, with Boosting and Bagging as representatives, are well-known machine learning approaches. It has become common sense that an ensemble is usually significantly more accurate than a single learner, and ensemble methods have already achieved great success in various real-world tasks.

Twelve years have passed since the publication of the first edition of the book in 2012 (Japanese and Chinese versions published in 2017 and 2020, respectively). Many significant advances in this field have been developed. First, many theoretical issues have been tackled, for example, the fundamental question of why AdaBoost seems resistant to overfitting gets addressed, so that now we understand much more about the essence of ensemble methods. Second, ensemble methods have been well developed in more machine learning fields, e.g., isolation forest in anomaly detection, so that now we have powerful ensemble methods for tasks beyond conventional supervised learning.

Third, ensemble mechanisms have also been found helpful in emerging areas such as deep learning and online learning. This edition expands on the previous one with additional content to reflect the significant advances in the field, and is written in a concise but comprehensive style to be approachable to readers new to the subject.

Zhou Ensemble Methods jetzt bestellen!

Zielgruppe


Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


Preface   Notations   1. Introduction   2. Boosting   3. Bagging   4. Combination Methods   5. Diversity   6. Ensemble Pruning   7. Clustering Ensemble   8. Anomaly Detection and Isolation Forest   9. Semi-Supervised Ensemble  10. Class-Imbalance and Cost-Sensitive Ensemble   11. Deep Learning and Deep Forest   12. Advanced Topics   References   Index


Zhi-Hua Zhou, Professor of Computer Science and Artificial Intelligence at Nanjing University, President of IJCAI trustee, Fellow of the ACM, AAAI, AAAS, IEEE, recipient of the IEEE Computer Society Edward J. McCluskey Technical Achievement Award, CCF-ACM Artificial Intelligence Award.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.