Davim | The Design and Manufacture of Medical Devices | Buch | 978-1-907568-72-5 | sack.de

Buch, Englisch, 386 Seiten, Gewicht: 720 g

Davim

The Design and Manufacture of Medical Devices


Erscheinungsjahr 2012
ISBN: 978-1-907568-72-5
Verlag: Woodhead Publishing

Buch, Englisch, 386 Seiten, Gewicht: 720 g

ISBN: 978-1-907568-72-5
Verlag: Woodhead Publishing


Medical devices play an important role in the field of medical and health technology, and encompass a wide range of health care products. Directive 2007/47/EC defines a medical device as any instrument, apparatus, appliance, software, material or other article, whether used alone or in combination, including the software intended by its manufacturer to be used specifically for diagnostic and/or therapeutic purposes and necessary for its proper application, intended by the manufacturer to be used for human beings. The design and manufacture of medical devices brings together a range of articles and case studies dealing with medical device R&D. Chapters in the book cover materials used in medical implants, such as Titanium Oxide, polyurethane, and advanced polymers; devices for specific applications such as spinal and craniofacial implants, and other issues related to medical devices, such as precision machining and integrated telemedicine systems.
Davim The Design and Manufacture of Medical Devices jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


List of figures

List of tables

Preface

About the contributors

Chapter 1: Characteristics and applications of titanium oxide as a biomaterial for medical implants

Abstract:

1.1 Introduction

1.2 Classification of biomaterials

1.3 Biomedical implantable devices

1.4 Applications

1.5 Proteins

1.6 Titanium oxide

Chapter 2: Precision machining of medical devices

Abstract:

2.1 Metallurgical aspects

2.2 Principal requirements of medical implants

2.3 Shape memory alloys

2.4 Conclusions

2.5 Acknowledgment

Chapter 3: Polyurethane for biomedical applications: A review of recent developments

Abstract:

3.1 Introduction

3.2 Biocompatibility evaluation

3.3 Biostability evaluation

3.4 Polyurethane for drug-controlled delivery

3.5 Polyurethane for cardiovascular applications

3.6 Polyurethane for medical supplies

3.7 Future outlook

Chapter 4: Application of the finite element method in spinal implant design and manufacture

Abstract:

4.1 Introduction to finite element method

4.2 General aspects of FEM

4.3 Parts of the finite element model of the spine

4.4 Verification

4.5 Validation

4.6 Application of the FEM in implant design

4.7 Conclusions

Chapter 5: Design and manufacture of a novel dynamic spinal implant

Abstract:

5.1 Introduction

5.2 Materials and methods

5.3 Results

5.4 Discussion

5.5 Conclusion

5.6 Acknowledgment

Chapter 6: Customized craniofacial implants: Design and manufacture

Abstract:

6.1 Introduction

6.2 The anatomic biomodels and craniofacial reconstruction

6.3 Biomodels and the design of customized prostheses

Chapter 7: Technological advances for polymers in active implantable medical devices

Abstract:

7.1 Introduction

7.2 Polymers as an alternative to metals

7.3 Challenges for implementing polymer components in AIMDs

7.4 Conclusions

Chapter 8: Integrated telemedicine systems: Patient monitoring, in-time prognostics, and diagnostics at domicile

Abstract:

8.1 Introduction

8.2 State of the art of telemedicine systems

8.3 Architecture

8.4 Implementation

8.5 Experimental results

8.6 Conclusions

Index


Davim, J. Paulo
Prof. (Dr.) J. Paulo Davim is a Full Professor at the University of Aveiro, Portugal, with over 35 years of experience in Mechanical, Materials, and Industrial Engineering. He holds multiple distinguished academic titles, including a PhD in Mechanical Engineering and a DSc from London Metropolitan University. He has published over 300 books and 600 articles, with an h-index of 99+ on Google Scholar and more than 36,500 citations. He is ranked among the world's top 2% scientists by Stanford University and holds leadership positions in numerous international journals, conferences, and research projects.

Professor J. Paulo Davim is based in the Department of Mechanical Engineering of the University of Aveiro and Head of MACTRIB - Machining and Tribology Research Group. He has more than 24 years of teaching and research experience in manufacturing, materials and mechanical engineering with special emphasis in machining and tribology. He is the editor of five international journals, and serves as guest editor, editorial board member, reviewer and scientific advisor for many other international journals and conferences. He has also published over 250 articles in refereed international journals and conferences.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.