Davim | The Design and Manufacture of Medical Devices | E-Book | sack.de
E-Book

Davim The Design and Manufacture of Medical Devices


1. Auflage 2012
ISBN: 978-1-908818-18-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 386 Seiten

Reihe: Woodhead Publishing Reviews: Mechanical Engineering Series

ISBN: 978-1-908818-18-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Medical devices play an important role in the field of medical and health technology, and encompass a wide range of health care products. Directive 2007/47/EC defines a medical device as any instrument, apparatus, appliance, software, material or other article, whether used alone or in combination, including the software intended by its manufacturer to be used specifically for diagnostic and/or therapeutic purposes and necessary for its proper application, intended by the manufacturer to be used for human beings. The design and manufacture of medical devices brings together a range of articles and case studies dealing with medical device R&D. Chapters in the book cover materials used in medical implants, such as Titanium Oxide, polyurethane, and advanced polymers; devices for specific applications such as spinal and craniofacial implants, and other issues related to medical devices, such as precision machining and integrated telemedicine systems. - Contains articles on a diverse range of subjects within the field, with internationally renowned specialists discussing each medical device - Offers a practical approach to recent developments in the design and manufacture of medical devices - Presents a topic that is the focus of research in many important universities and centres of research worldwide
Davim The Design and Manufacture of Medical Devices jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


List of figures
1.1 Schematic diagram of a biomaterial–tissue interaction 9 1.2 Artificial heart valve with blood clot 12 1.3 a-Helix and ß-sheet from the secondary structure of protein 13 1.4 Stick and ball model of anatase (A) and rutile (B) of TiO2 16 1.5 Photo-excitation and de-excitation pathways 20 1.6 XRD of TiO2 and 4.7% Ag-TiO2 thin films 30 1.7 (A) Raman spectra for TiO2 and (B) 4.7% Ag-TiO2 thin films 31 1.8 (A) XPS survey scan of TiO2, (B) 4.7 at.% Ag-TiO2, and (C) HSA adsorbed on Ag-doped TiO2 32 1.9 (A) XPS data with deconvolution of Ti 2p and (B) O1s bands of TiO2 33 1.10 XPS deconvolution of Ag 3d band of 4.7 at.% Ag-TiO2 film 34 1.11 Image of TiO2 (A) and 4.7 at.% Ag-TiO2 (B) before, after adsorption of HSA (A*, B*), and following irradiation of UV-B (A", B") 35 1.12 Silver ion release curve of the 4.7 at.% Ag-TiO2 thin film 37 1.13 (A) Raman spectra of HSA powder and (B) HSA adsorbed on TiO2 [dark control], (C) HSA adsorbed on stainless steel after 30 min UV-B [light control], (D) HSA adsorbed on TiO2 surfaces after 30 min UV-A, (E) HSA adsorbed on TiO2 after 30 min UV-B and (F) HSA adsorbed on TiO2 after 30 min UV-B 40 1.14 Raman shift analysis of Amide I on HSA adsorbed on: TiO2 (A) [dark control], stainless steel [light control] (B) and TiO2 (C) and 4.7 at.% AgTiO2 (D), followed by irradiation with UVB for 30 min 42 1.15 (A) XPS spectra of C1s, (B) N1s and (C) O1s, of HSA adsorbed on 4.7 at.% Ag-TiO2 43 1.16 Deconvolution of C1s band of HSA adsorbed on 4.7% Ag-TiO2 following UV-B irradiation 46 2.1 Schematic representation of types of phase diagrams between titanium and its alloying elements 63 2.2 Partial phase diagram of titanium and a ß-stabilizer element 65 2.3 Microstructures of (a) ß Ti-35Nb (wt%) and (b) a + ß Ti-6Al-7Nb (wt%) alloys cooled in air 66 2.4 Microstructure of the Ti-25Nb (wt%) alloy 67 2.5 A schematic TTT diagram for ß-phase transformation in titanium alloys with ß-stabilizer elements 68 2.6 Polarization curves for CP titanium and Ti-6Al-4 V alloy (scan rate of 0.1 mV.s-1) 73 2.7 Interaction between titanium and body liquids 76 2.8 Titanium trauma medical implants 83 2.9 Titanium orthopedics medical devices 85 2.10 Martensite transformation in shape memory alloys and steels 88 2.11 Shape memory effect 89 2.12 Pseudoelasticity or superelasticity 90 2.13 Formation of hydroxyapatite layer on titanium oxide film 93 2.14 Examples of nitinol medical devices 101 2.15 Dental applications of nitinol 103 3.1 Formation of fibrin clot on the polyurethane surface 124 3.2 In vivo evaluation of the effects of PUR/rhBMP-2 scaffolds on new bone formation in a rat femoral plug model 125 3.3 Heart valve leaflet gene delivery using polyurethane (PU) pulmonary replacement cusps with antibody-tethered AdGFP (108 PFU) 128 3.4 (a) Extruder device showing vertical mechanical arm with mandrel attached, (b) polymer chamber with mandrel entering superiorly and polymer introduction channel laterally and (c) under surface of polymer chamber showing adaptors enabling control of exit aperture size 132 3.5 Comparison of wound healing by (a) gauze and (b) liquid bandage (sample PD2) dressings 136 3.6 Histological findings of wound 138 4.1 Computer tomography scans of the cervical spine of a patient 156 4.2 Splitting the STL model to numerous finite elements for C5 157 4.3 Cancellous core and cortical shell for assigning the material properties shown on the section view of C5 meshed model 158 4.4 FE model of the intervertebral disc and definition of the nucleus and layers 162 4.5 Using cable elements to represent the ligaments 164 4.6 Flow of the verification and validation in biomechanics 167 4.7 FE model of the lumbar spine, L3–S1 segment 171 4.8 FE model of the L4–L5 lumbar motion segment with implanted interspinous device 173 4.9 FE model for the Dynesys system developed by Eberlein et al. (2002) 174 5.1 The part of implant and parameters 189 5.2 The fixation and loading points of the implant 191 5.3 Photograph showing a series of produced dynamic spinal implants 191 5.4 Effect of pitch on strength and flexibility 193 5.5 Effect of helical thickness on strength and flexibility 195 5.6 Effect of radial thickness on strength and flexibility 196 5.7 Effect of hole diameter on strength and flexibility 198 5.8 Effect of cut turn number on strength and flexibility 199 6.1 Virtual biomodal obtained from computed tomography images, used for visualization of bone structure, surgical planning and implant design 210 6.2 Physical anatomical biomodel of a patients’ skull 210 6.3 Software interface of a 3D reconstruction of medical images 212 6.4 Custom implant manufacture used to repair defect in zygomatic bone region 216 6.5 Patient’s biomodel used as template to contour a titanium plate to fit the defect 217 6.6 Sequence from physical object to CAD solid model 219 6.7 Implant design performed in a virtual environment. Mandible reconstruction planned from computed tomography images using mirroring operations 220 6.8 (a) Software tool for the definition of surgical auxiliary geometries by the surgeon, (b) Use of these geometries in a CAD system by the designer 222 6.9 SPIF tools 223 6.10 Modeling of customized cranial plate in CAD environment: from CT data to the implant virtual model 225 6.11 Interface with the CAM software 225 6.12 Incremental printing of customized implant 226 6.13 Models of the patient’s glenoid fossa 228 6.14 Hand held 3D-Scanner, zSnapper portable, VIALUX 229 6.15 Process chain 230 6.16 LaserCUSING® system 232 6.17 Direct Manufacturing – jaw implant created with...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.